Im Datennebel und an der Kante zur Cloud

Die Strukturen und Konzepte in der industriellen Automatisierungswelt werden sich durch das Internet of Things und Industrie 4.0 völlig verändern. Allerdings werden wohl deutlich weniger Geräte direkt mit einer Cloud kommunizieren, als in vielen Prognosen vorhergesagt. Statt dessen entsteht durch das ‚Fog-Networking‘ bzw. ‚Edge-Computing‘ eine Sichtweise zur lokalen Integration unzähliger Datenpunkte.
Im Industrial Internet of Things (IIoT), aber auch im Industrie-4.0-Umfeld erkennt man schon den veränderten Lösungsansatz: Zwischen Feldebene und Cloud entsteht unter dem Oberbegriff Fog- bzw. Edge-Computing (auch Fog-Networking genannt) eine serviceorientierte Zwischenschicht. Sie könnte sogar die gesamte Feldebene einer Smart Factory vollständig absorbieren. Das Ziel dabei ist, einzelne Systeme am Rand zur Cloud (at the edge), also im unmittelbaren Umfeld (Nebel = Fog), intelligenter zu machen, mit speziellen Fähigkeiten auszustatten und Sonderaufgaben ausführen zu lassen. Dadurch können die ‚Things im Nebel‘ direkt oder über ein Edge-Gateway untereinander kommunizieren. Automobilhersteller testen zusammen mit Mobilfunknetzbetreibern bereits Cloudlet-Konzepte (Mobil Edge Computing) für autonome Fahrzeuge. Dabei kommunizieren Fahrzeuge und Verkehrsschilder über die Funkzellenhardware als Edge-Gateway direkt miteinander, ohne dass die einzelnen Datenpakete über eine Cloud ins Internet geleitet werden. Mit IBM hat ein erster führender IoT-Cloud-Anbieter einen Strategiewechsel vollzogen: Seit einigen Wochen werden die Watson-Analytics-Funktionen nicht mehr nur in der Wolke, sondern auch im Cisco-Edge-Router angeboten. In den USA wurde mit dem OpenFog Consortium inzwischen schon ein Verband gegründet, der sich diesem speziellen Thema widmet. Die Gründungsmitglieder ARM, Cisco, Dell, Intel, Microsoft und die Princeton University wollen ‚Fog-Technologie‘ gemeinsam weiterentwickeln und im Markt verbreiten. Dabei werden sie inzwischen auch von GE und Schneider Electric und zahlreichen weiteren Unternehmen und Organisationen unterstützt.

Vielfalt statt hierarchischer Kommunikation

Die gegenwärtigen Kommunikationsstrukturen im industriellen Umfeld lassen sich im Allgemeinen durch eine hierarchische Pyramidenstruktur beschreiben. Ganz unten die Feldebene, darüber eine Steuerungsebene und als Krönung des Ganzen in der Regel mehrere Leitebenen mit unterschiedlichen Aufgaben. In dieser Pyramide existieren jeweils ein Bottom-Up-Datenfluss und ein Top-Down-Informationsfluss. Die Datenerfassung beginnt in der untersten Ebene, die Informationsgewinnung erfolgt zentralistisch in den höheren Schichten. Anweisungen werden somit von oben nach unten kommuniziert. Da hätte es funktional sehr gut ins Bild gepasst, oben auf die Pyramide einfach noch eine Cloud-Anbindung draufzusetzen und in der ‚Wolke‘ z.B. Predictive-Analytics-Entscheidungen zu fällen, Intralogistikprozesse zu steuern usw. Das gesamte Datensilo ‚Automatisierungspyramide‘ wäre dann sogar noch fernsteuerbar. IIoT- bzw. Industrie-4.0-basierte Automatisierungslösungen werden mittelfristig aber dafür sorgen, dass die hierarchische Kommunikationspyramide verschwindet. Das dreidimensionale Referenzarchitekturmodell Industrie 4.0 (RAMI 4.0) lässt sich nicht mit der vorhandenen Pyramidenstruktur umsetzen. Einfach alle Pyramiden per Cloud miteinander zu verbinden hilft allerdings auch nicht weiter. Es werden vielmehr Anwendungsarchitekturen mit einzelnen Kommunikations-Domains entstehen, in denen auch weitreichende autonome Entscheidungen getroffen werden.

Kommunikations-Domains ersetzen Pyramiden

Abbildung 2 illustriert ein Beispiel mit den zukünftigen Kommunikationsbeziehungen einer IIoT- bzw. Industrie-4.0-basierten Smart Factory. Die gesamte Automatisierungstechnik (Sensoren, Aktoren, Steuerungen usw.) ist in einer OT-Domain (OT = Operational Technology) zusammengefasst. In dieser Ebene gibt es verschiedene kommunikative Querverbindungen (D2D = Device-to-Device), z.B. OPC UA Pub/Sub per MQTT oder IEEE TSN bzw. RFC 1006 bei älteren Steuerungen. Die zu einer Smart Factory gehörende MES- und ERP-Software ist in der IT-Domain (IT = Information Technology) zu finden. Alle aus der Smart-Factory-Sicht externen Komponenten und Systeme sind Bestandteile einer CT-Domain (CT = Cloud Technology). Hier findet man die Partner-ERP-Systeme einer bestimmten Wertschöpfungskette, Smartphone Apps usw., aber auch in der Smart Factory hergestellte Produkte (siehe ‚Connected Product‘ in der CT-Domain der Abbildung 1), die von Anwendern irgendwo auf der Welt genutzt werden. Sie liefern nun per Internet laufend Betriebs- und Zustandsdaten an das ERP-System des Smart-Factory-Betreibers. Mit Hilfe dieser Daten lassen sich den Produktnutzern zusätzliche Services (sogenannte Smart Services, wie z.B. Opex-basierte Angebote und Wartungsverträge für eine vorausschauende Instandhaltung) anbieten sowie das betreffende Produkt auf Basis echter Nutzerdaten weiterentwickeln. Dazu müssen die Daten an Produktmarketing und Entwicklung weitergeleitet werden. Zwischen den einzelnen Domains existieren zahlreiche Verbindungen. So sind einzelne Devices per D2B (Device-to-Business) bzw. D2C (Device-to-Cloud) direkt mit MES-, ERP- und Cloud-Anwendungen verbunden. Die ERP-Systeme zweier Unternehmen, die als Wertschöpfungskettenpartner zusammenarbeiten, sind in Zukunft per B2B-Datenverbindung (B2B = Business-to-Business) miteinander gekoppelt usw.

Im Datennebel und an der Kante zur Cloud
Bild: SSV Software Systems GmbH


Das könnte Sie auch interessieren

Modular konfigurierbares IP67-geschütztes Gehäusesystem

ADL Embedded Solutions kündigt mit dem ADLMES-9200 ein robustes Gehäusesystem für den Einsatz in rauen Umgebungen an. Das ADLMES-9200 ist kompatibel zu ADLs Palette an Intel-basierten PC/104- und 3,5-Zoll-Single-Board-Computern, die mit leistungsfähigen CPUs von Low-Power-ATOM- bis zu den neuesten Intel-Core-i5/i7-Prozessoren bestückt sind.

Die ADLMES-9200-Familie ist in zwei verschiedenen Größen-Varianten erhältlich:
– ADLMES-9200-LPP: „Low Profile+“ Gehäusevariante zur Integration von maximal drei Baugruppen mit Außenabmessungen von 8,4cm / 10,2cmx17,5cmx17,0cm (HöhexBreitexTiefe)
– ADLMES-9200-P1P: „Plus One+“ Gehäusevariante zur Integration von maximal fünf Baugruppen mit Außenabmessungen von 11,7cm / 13,5cmx17,5cmx17,0cm.

 

Das ADLMES-9200-Gehäusesystem ist für den Einsatz in rauen Umgebungen gemäß MIL-STD 810 konzipiert. Es eignet sich für unterschiedliche robuste Einsatzszenarien, bei denen es auf kleine Abmessung, geringes Gewicht und hohe Leistungsfähigkeit (SWaP) ankommt. Zu den Zielmärkten gehören traditionelle militärische Anwendungen für mobile, taktische, Luft- und Land-Fahrzeuge, aber auch industrielle Applikationen in der Öl- und Gasindustrie, im Bergbau, Baugewerbe, Transportwesen sowie in kommerziellen unbemannten Fahrzeugen.

Zum Datenblatt

FED startet E²MS-Award 2017 und sucht Leuchtturmprojekte im EMS-Geschäft

Der Fachverband FED startet eine neue Runde des E²MS-Award. Alle EMS-Firmen mit Sitz in Deutschland, der Schweiz und Österreich können sich für den Branchenpreis bewerben.Leuchtturmprojekte – Projekte, die Vorbildcharakter und Signalwirkung für die Branche haben, zeichnet der E²MS-Award aus.

PIC-MCU-Serie für vereinfachte Entwicklung von Microchip bei Rutronik

Mit der PIC16F15386-Serie von Microchip präsentiert Rutronik einen leistungsfähigen Einstieg in das 8-Bit-PIC-Mikrocontroller-Angebot. Zusätzlich zur bekannten Core-Independent-Peripherie (CIPs) enthält die neue Serie einen hochpräzisen 32-MHz-Oszillator und spezielle Speicherfunktionen wie Memory Access Partition (MAP), die versehentliches Überschreiben verhindern.

Ausgabe 2 2017

  • RASPBERRY PI
  • CLOUD COMPUTING
  • VIRTUAL REALITY

Single-Chip-IC der Bluetooth LE 4.2 unterstützt

Toshiba Electronics Europe hat seine Dual-Mode Bluetooth Classic und Bluetooth Low Energy ICs verbessert. Sie unterstützen nun Bluetooth LE4.2 (BLE 4.2).

FPGA IoT Maker Board für die Entwicklung von End-to-End-Anwendungen

Arrow Electronics stellt ein neues FPGA IoT Maker Board vor, das für die Entwicklung von End-to-End-Anwendungen und für optimierte Kosten ausgelegt wurde. Das Arrow MAX1000 Board kann direkt in einer benutzerdefinierten Anwendung installiert oder auf einer völlig separaten Platine eingesetzt werden.